Prof. Oscar Castillo, Ph.D., D.Sc.
Tijuana, Institute of Technology
Tijuana, Mexico
BIOGRAPHY:
Oscar Castillo holds the Doctor in Science degree (Doctor Habilitatus) in Computer Science from the Polish Academy of Sciences (with the Dissertation “Soft Computing and Fractal Theory for Intelligent and Manufacturing”). He is a Professor of Computer Science in the Graduate Division, Tijuana Institute of Technology, Tijuana, Mexico. In addition, he is serving as Research Director of Computer Science and head of the research group on Hybrid Fuzzy Intelligent Systems. Currently, he is President of HAFSA (Hispanic American Fuzzy Systems Association) and Past President of IFSA (International Fuzzy Systems Association). Prof. Castillo is also Chair of the Mexican Chapter of the Computational Intelligence Society (IEEE). He is also a member of NAFIPS, IFSA and IEEE. He belongs to the Mexican Research System (SNI Level 3). His research interests are in Type-2 Fuzzy Logic, Fuzzy Control, Neuro-Fuzzy and Genetic-Fuzzy hybrid approaches. He has published over 300 journal papers, 20 authored books, 80 edited books, 300 papers in conference proceedings, and more than 300 chapters in edited books, in total more than 1100 publications (according to Scopus) with h index of 90 and more than 27000 citations according to Google Scholar. He has been Guest Editor of several successful Special Issues in the past, like in the following journals: Applied Soft Computing, Intelligent Systems, Information Sciences, Soft Computing, Non-Linear Studies, Fuzzy Sets and Systems, JAMRIS and Engineering Letters. He is currently Associate Editor of the Information Sciences Journal, Journal of Engineering Applications on Artificial Intelligence, International Journal of Fuzzy Systems, Journal of Complex Intelligent Systems, Granular Computing Journal and Intelligent Systems Journal (Wiley). He was Associate Editor of Journal of Applied Soft Computing and IEEE Transactions on Fuzzy Systems. He has been elected IFSA Fellow in 2015 and MICAI Fellow in 2016. Finally, he recently received the Recognition as Highly Cited Researcher in 2017 and 2018 by Clarivate Analytics and Web of Science.
TYPE-2 FUZZY SYSTEMS: THEORY AND APPLICATIONS
ABSTRACT:
Type-2 fuzzy systems are powerful intelligent models based on the theory of fuzzy sets, originally proposed by Prof. Zadeh. Most real-world applications up to now are based on type-1 fuzzy systems, which are built based on the original (type-1) fuzzy sets that extend the concept of classical sets. Type-2 fuzzy sets extend type-1 fuzzy sets by allowing the membership to be fuzzy, in this way allowing a higher level of uncertainty management. Even with the current successful applications of type-1 fuzzy systems, now several papers have shown that type-2 is able to outperform type-1 in control, pattern recognition, manufacturing and other areas. The key challenge in dealing with type-2 fuzzy models is that their design has a higher level of complexity, and in this regard the use of bio-inspired optimization techniques is of great help in finding the optimal structure and parameters of the type-2 fuzzy systems for particular applications, like in control, robotics, manufacturing and others. Finally, the prospects for the future trends and applications of type-n fuzzy logic will be discussed.
Copyright © 2024 Wokrshop of Hybrid Intelligent Systems - Todos los derechos reservados.
Usamos cookies para analizar el tráfico del sitio web y optimizar tu experiencia en el sitio. Al aceptar nuestro uso de cookies, tus datos se agruparán con los datos de todos los demás usuarios.